Correlation Analysis Cell: A Tutorial

Version 1.0

Copyright © 2007-2008 i2b2

Table of Contents

About this Guide	2
Prerequisites and Third-Party Software	3
Downloads and Installation	3
Tutorial Session	5

About this Guide

Informatics for Integrating Biology and the Bedside (i2b2) is one of the sponsored initiatives of the NIH Roadmap National Centers for Biomedical Computing (http://www.bisti.nih.gov/ncbc/). One of the goals of i2b2 is to provide clinical investigators broadly with the software tools necessary to collect and manage project-related clinical research data in the genomics age as a cohesive entity—a software suite to construct and manage the modern clinical research chart.

The guide provides installation steps for the *Correlation Analysis Cell* of the i2b2 hive. This specialized analysis cell uses mutual information theory to calculate observed correlations within the data of the hive. This type of cell represents an important achievement of the hive.

Document Version History

Date	Revision	Description	Author(s)
June 27, 2008	version 1.0	Initial revision, 1.0	Vlad Valtchinov

1

Prerequisites and Third-Party Software

Downloads and Installation

a. i2b2 Workbench version 1.2.3 or 1.3

Download i2b2 Workbench version 1.2.1 (i2b2Workbench-src-121.zip) from https://www.i2b2.org/software/repository.html?t=demo&p=14. Follow installation and configuration instructions as given in the *i2b2 Workbench Developers' Guide v1.2.1* which can be found under the Docs tab.

b. Java JDK 5.0 - needed for i2b2 Workbench

This version of the DJK is needed for running the Eclipse Workbench. Download JDK 5.0 Update 11 (jdk-1_5_0_11-windows-i586-p.exe) from <u>http://java.sun.com/products/archive/</u>

Run the installer. Set up JAVA_HOME and CLASSPATH environment variables after installation.

c. Eclipse

You will need to use version 3.2.1 of the Eclipse SDK (eclipse-SDK-3.2.1-win32.zip), which can be found at <u>http://archive.eclipse.org/eclipse/downloads</u>. If you install Eclipse, be sure to install it in an area separate from any previous Eclipse installations.

Version 1.3 of the *i2b2 Workbench* has been released and it can use both Eclipse 3.2.1 and 3.3.2 versions. Please consult the *i2b2 Workbench* documentation.

To install, extract the zip file into a directory on local disk. Create a local desktop shortcut to eclipse.exe.

d. yEd Graph Editor

3

The Correlation Analysis Cell uses the yWorks' yED Graph Editor for viewing and editing Relevance Networks graph files. Download the most recent version for your platform available at

<u>http://www.yworks.com/en/products_yed_about.html</u>. After installing, make sure the GRAPHML file format is opened by default by yEd.

2

Tutorial Session

Overview

This *Tutorial* uses an example of correlating three fictitious concepts of type diagnostic labs to guide the user through all computational steps the *Correlation Analysis Cell* algorithm.

The input data, *valid intervals* and the *normal* correlation computation are presented. Some of these quantities are also manually calculated to allow for a direct comparison with the computer-generated results.

Location of Tutorial Session

This session is located in a file called DEMO_LABS.xml. It will be located in the *i2b2 Workbench* directory. If not there consult the *Correlation Cell Installation Guide* or the *Correlation Cell Developer's Guide* for proper location.

After import one should see the following configuration:

Next click on *Create Session/Get Data* button.

oncepts S	election>>	Calculate Valid Intervals>>	Calculate Correlations>>	Results	About	
Row #	Drag Cor	cents Into Table				+
1	0.09.00		Lab1 (Labtests \LAB \Lab1)			
2			Lab2 (Labtests\LAB\Lab2)			

Input Data for all lab types and patients

Names of the types are "Lab1", "Lab2" and "Lab3" (or "1", "2" and "3" respectively).

We next list the table with the all input lab values, their type, value, the patient they belong to and the time_of_exam parameter:

Result	Patien	t Test Date
10.00000	pat1	2006-04-25 17:10:24.000
20.00000	pat1	2006-04-25 17:10:24.000
30.00000	pat1	2006-04-25 17:10:24.000
11.00000	pat1	2006-04-26 17:10:24.000
21.00000	pat1	2006-04-27 17:10:24.000
31.00000	pat1	2006-04-28 17:10:24.000
300.00000	pat2	2006-05-01 17:10:24.000
200.00000	pat2	2006-05-02 17:10:24.000
100.00000	pat2	2006-05-03 17:10:24.000
301.00000	pat2	2006-05-10 17:10:24.000
	Result 10.00000 20.00000 30.00000 11.00000 21.00000 31.00000 300.00000 200.00000 100.00000 301.00000	ResultPatien10.00000pat120.00000pat130.00000pat111.00000pat121.00000pat130.00000pat2200.00000pat2100.00000pat2301.00000pat2

Calculation using the Correlation Analysis Cell

Run the *valid interval* portion of the analysis. Use *normal* method with the default

parameter selections.	Correlation Analysis Cell 🕺					5		
	Concepts Select	Concepts Selection>>> Calculate Valid Intervals>>> Calculate Correlations>>> Results About						
	Valid Intervals	Pairs Results	Compare Graphs					
Co to Pagulta > Valid	Туре	Description	Valid interval*	Normal	LPF	LPFTot	Interval count	1
Go to Results-> Valla	Lab1	Labtests\LA	0y 0.03mo 1d 24h 1440m	0y 0.03mo 1d 24h 1440m	1		1	Т
Intervals to display	Lab2	Labtests\LA	0.01y 0.07mo 2d 48h 2880m	0.01y 0.07mo 2d 48h 2880m			1	٦
intervais to display	Lab3	Labtests\LA	0.01y 0.1mo 3d 72h 4320m	0.01y 0.1mo 3d 72h 4320m			2	
the results for this								
phase.								

Valid intervals (in minutes), normal finder are:

Lab type	Valid interval				
1	1440	(1day)			
2	2880	(2 days)			
3	4320	(3 days)			

oncep	ts Selectio	n>> C	Calculate Va	alid Interva	ls>> Calculate C	orrelations>>	Results	About		
/alid Ir	ntervals	Pairs Res	sults Com	ipare Graph	าร					
Sea	arch And D	isplay —								
M	etric		Pearson		•					
T	/PE 1 or T	YPE 2 is			(shows only p	airs with this ty	pe)			
TH	nreshold	i			(sets threshol	d value on sele	cted metric	c)		
То	D				(most correlat	ed pairs on sele	ected metr	ic)		
	alculation	nethod:	NORMAL]			,		
	alculacion	mechou:	NORMAL							
St	NOW		All	~	results					
								l	View Select	ion .
	Type 1	Descr	iption 1	Type 2	Description 2	MIC	Pearso	n	Vector Len	Sca
ID		Labtect	:s\LAB\L	Lab2	Labtests\LAB\L	0.9183	1.0		3	View
ID 1	Lab1	Labtest			Lable shall ADU	0.9112	0.0042	L	1	
ID 1 2	Lab1 Lab1	Labtest	:s\LAB\L	Lab3	Labtests (LAB (L	0.0115	0.9943		T	View

Next, go to calculate correlations between the 3 concepts. There are 3 possible pairs between these concepts. Use *normal* overlap method, accept all other defaults. Go to *Results->Pairs* to review.

The correlation results are shown on the screen shot on the left.

Click *View* on the first pair (ID =1), with Pearson's equal to 1 - the overlapped in time vectors

are listed below the scatter plot as:

Row No.	Vector 1	Vector 2
1	10.0	20.0
2	11.0	20.0
3	100.0	200.0

Manual Calculation of *valid intervals* and *Pearson's*: Pair with ID = 1

First, construct the time overlap table for the *normal* method. Consult corresponding chapters in *Correlation Analysis Cell User's Guide*.

There are 2 patients ("patient 1" and "patient 2") that simultaneously have data of type "Lab 1" and "Lab 2". To construct the overlapped vectors one needs to find the amount of common overlap between the data types in the pair, per each patient.

Patient 1:

Test Date	"1" result	"2" result
2006-04-25 17:10:24	10	20
2006-04-26 17:10:24	11	
2006-04-27 17:10:24		21

The *valid interval* for lab type "1" is 1,440 minutes (1 day) and 2,880 minutes for lab type "2".

The resulting vectors from the common overlap from data for "Patient 1" will be

Vector 1 = 10, 11Vector 2 = 20, 20

Patient 2

Test Date	"1" result	"2" result
2006-05-02 17:10:24		200
2006-05-03 17:10:24	100	

This will add to the previous vector a single component of 100 for lab type "1" and 200 for lab type "2" respectively, because the "2" valid interval covers the date of "1" results.

The vectors for the pair will look like

Vector for lab type "1" = (10, 11, 100) Vector for lab type "2" = (20, 20, 200).

This result matches the one the *Correlation Analysis Cell* displays in tabular format for the *Scatter Plot* option, see screen shot above.

Pearson's Coefficient Manual Calculation

The linear correlation coefficient is calculated as follows:

X mean = (10 + 11 + 100)/3 = 40.3333Y mean = (20 + 20 + 200)/3 = 80SUM1 = $(10 - 40.3333)(20 - 80) + (11 - 40.3333)(20 - 80) + (100 - 40.3333)(200 - 80) = (-30.3333)^*(-60) + (-29.3333)^*(-60) + 60.3333^*120 = 1819.998 + 1759.998 + 7239.996 = 10819.992$

 $SUM2 = (-30.3333)^2 + (-29.3333)^2 + 60.3333^2 = 920.10908889 + 860.44248889 + 3640.10708889 = 5420.65866667$

 $SUM3 = (-60)^2 + (-60)^2 + 120^2 = 3600 + 3600 + 14400 = 21600$

9

RESULT = SUM1 / SQRT(SUM2)*SQRT(SUM3) = 10819.992 / (73.6251 * 146.9693) = 10819.992 /10820.6294 = 0.9999410939² = 0.99988219= 0.999902

The *Correlation Cell* gives one (i.e. *Pearson's* = 1) for this pair. The two numbers are equal within the rounding accuracy of the display grid.